Fire Station Relocation Study for the Coastside Fire Protection District

Volume 1 of 2 – Main Report

February 19, 2014
TABLE OF CONTENTS

Section
Page

VOLUME 1 of 2 – Main Report (this volume)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1—Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Section 2—Project Background and Citygate Methodology</td>
<td>2</td>
</tr>
<tr>
<td>General Fire Station Location Best Practices</td>
<td>2</td>
</tr>
<tr>
<td>Section 3—Incident Response Statistics Key Findings</td>
<td>4</td>
</tr>
<tr>
<td>Section 4—Existing Geographic Coverage Models</td>
<td>7</td>
</tr>
<tr>
<td>Section 5—Relocation of Fire Station Coverage Models</td>
<td>9</td>
</tr>
<tr>
<td>Section 6—Findings and Considerations</td>
<td>13</td>
</tr>
</tbody>
</table>

Table of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Percent of Each Engine’s Responses by Station Area (Three Years Containing 6,961 Individual Apparatus Responses)</td>
</tr>
<tr>
<td>Table 2</td>
<td>District Response Time Performance</td>
</tr>
<tr>
<td>Table 3</td>
<td>Travel Time to 90% and Incident Count Inside Each Station Area (Three Years Containing 5,611 Emergent Apparatus Responses)</td>
</tr>
<tr>
<td>Table 4</td>
<td>Travel Time to 90% and Incident Count into Other Station Areas (Three Years Containing 5,611 Emergent Apparatus Responses)</td>
</tr>
<tr>
<td>Table 5</td>
<td>Road Mile Coverage for All Scenarios</td>
</tr>
</tbody>
</table>

Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Volume of Incidents per Area over Three Years</td>
</tr>
</tbody>
</table>

VOLUME 2 of 2 – Map Atlas (separately bound)
SECTION 1—EXECUTIVE SUMMARY

Citygate Associates, LLC was retained by the Coastside Fire Protection District (the District) to evaluate its response time coverage options for replacing its two aging fire stations in the El Granada (Station 41) and Moss Beach/Montara (Station 44) areas of the District. These two stations are older, and too small to meet District near-term needs. A recent facility assessment commissioned by the District also found that it would not be cost-effective to substantially remodel the stations. Both Stations 41 and 44 are on small parcels, in or very close to housing.

Given these factors, the District asked the question:

“If one new station housing both fire crews could be centrally located on a new, larger parcel, could it still provide response times equivalent to the current two sites?”

In addition, Citygate was tasked to find the two best response time sites, should the single site prove unfeasible due to lengthened response times.

Based on the analysis in this study, Citygate finds:

1. The existing District-wide response times are very good given the challenging topography and street network in this section of the coastline.

2. A single station site in the central or northern part of the District cannot provide similar response times as the two existing fire station locations to both neighborhoods.

3. A single fire station site also reduces response time overlap into adjoining fire station areas. This is needed when District units are committed to other emergencies.

4. Response times in the central and northern District can be maintained, or slightly improved, if one or both Stations 41 and 44 were to be relocated to new sites.

Given the technical measures and the findings of this study, Citygate offers the following considerations to the District as it identifies final replacement parcels for Stations 41 and 44:

1. Maintain a three-station deployment model.

2. As some of the differences between site pairings are very small, Citygate suggests these factors next be evaluated to narrow down the selections for final cost determination:
 a. Parcel size.
 b. Traffic access for fire trucks.
 c. Land cost and cost of site improvements before a station can be built.
 d. Impacts to neighbors.
SECTION 2—PROJECT BACKGROUND AND CITYGATE METHODOLOGY

Citygate used a combination of prior incident response time history and geographic mapping (GIS) tools to measure prior response times and to project probable response times from a single or new two-station site. In these efforts, we received incident data from San Mateo County’s regional fire dispatch center for a 3-year span (12/09/2010 – 12/08/2013).

Citygate then calibrated travel times in the GIS map model, using the District’s prior incident records, by programming actual fire truck travel times over the District’s unique street topography.

We then set the GIS model with the District’s fire unit travel time goal to show predicted coverage. Currently, the District does not have an adopted response time performance policy. In prior years, the District has benchmarked its services against the County Emergency Medical System’s (EMS) requirement for the first firefighter-paramedic unit to arrive on scene in 6:59 minutes/seconds from the point of dispatch. Therefore, in this study we subtracted the District’s historical crew turnout time (from the incident records) of 1:30 minute/seconds from the 6:59 goal point, and then used a travel time of 5:30 minutes/seconds to evaluate station coverage areas.

Citygate met once on site with Department staff to listen to the needs of the area. Part of the day was spent touring each of the fire stations and major service areas under consideration due to location, age, and size. After the on-site meeting, the Citygate team produced a large quantity of more technical in-depth response statistics and geographic mapping views of the deployment system. This analysis helped all parties to understand how the fire station deployment system can best be updated.

GENERAL FIRE STATION LOCATION BEST PRACTICES

In general, fire stations should serve a 360-degree area, covering the most populated parcels in the least minutes of travel. Thus, stations should not be positioned against barriers such as freeways, rivers, or large parcels, such as industrial institutions, that block cross-city through-streets. Further, stations should not be located in positions that require the first 60-80 seconds of travel to be through open space areas, or on very narrow, congested streets. Such situations waste response time coverage, or hamper it, as the responding unit cannot clear the immediate station area quickly enough to reach the outer edges of its assigned area in an appropriate amount of time. The best station location is one just off a primary or secondary arterial roadway, where with normal traffic signal access near the station, the responding apparatus can enter a higher speed road network that feeds the smaller, more congested neighborhoods and commercial parcels.

In the Coastside Fire Protection District, many of these station location best practices are impeded by the ocean on one side, the coastal hills to the inland side, and one primary north
south arterial roadway. However, to the District’s benefit, while the District is fairly long north to south, its resident populations are clustered in three major areas. Each of these areas—Half Moon Bay, El Granada and Moss Beach/Montara—currently have one fire station.

Citygate used the above response time policy, as well as published best practice deployment advice from the National Fire Protection Association (NFPA), the Insurance Service Office (ISO), and the Commission on Fire Accreditation International (CFAI). The analysis was not limited to singular or simple one-size-fits-all measures and recommendations. The District’s community’s demand on fire and emergency medical services is significant and complex due to geography and development patterns.

As such, an analysis of options needs to consider that each population cluster should, ideally, have equal access to a basic framework of response that can control common, daily emergencies without them escalating frequently to catastrophic size. This drains all of a department’s response resources and causes significant human and economic loss.
SECTION 3—INCIDENT RESPONSE STATISTICS KEY FINDINGS

In addition to this summary level report, Citygate also delivered to the District a comprehensive analysis of prior incident types of calls, response times, and types of properties responded to. The key factors to note in this review of prior incidents are:

◆ Incidents demand by time-of-day, day-of-week, and month follow typical suburban California coastal community patterns.

◆ There are demands for service 24/7/365 in all areas, while Half Moon Bay is the busiest area.

◆ The three current fire station areas have different but significant demand:

Table 1—Percent of Each Engine’s Responses by Station Area
(Three Years Containing 6,961 Individual Apparatus Responses)

<table>
<thead>
<tr>
<th>Engine</th>
<th>Station 40</th>
<th>Station 41</th>
<th>Station 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>E40</td>
<td>93.50%</td>
<td>4.53%</td>
<td>1.97%</td>
</tr>
<tr>
<td>E41</td>
<td>27.92%</td>
<td>63.80%</td>
<td>8.28%</td>
</tr>
<tr>
<td>E44</td>
<td>13.37%</td>
<td>21.28%</td>
<td>65.35%</td>
</tr>
</tbody>
</table>

Regarding response times across the entire District over the 3-year study period, Citygate finds that the District does very well despite being confronted by the challenging topography and road system:

Table 2—District Response Time Performance

<table>
<thead>
<tr>
<th>Component of Time</th>
<th>Time in Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>911 Received to Arrival</td>
<td>7:45-8:15</td>
</tr>
<tr>
<td>Dispatch Processing</td>
<td>0:30</td>
</tr>
<tr>
<td>Crew Alert (Turnout)</td>
<td>1:20-1:35</td>
</tr>
<tr>
<td>Travel Time (Wheels Rolling)</td>
<td>6:30-6:50</td>
</tr>
</tbody>
</table>

Given that the call received to first unit arrival times in the District are at or just over the County EMS system goal, Citygate looked at only travel time performance, and found, at a travel time goal of 5:30 minutes/seconds, that 81.4 to 84.1% of the incidents received service. This result confirms that a three-fire-station site plan, with one station per population area, is delivering customer service within District expectations. This following table shows the travel time in each station area for 90% of the incidents:
Table 3—Travel Time to 90% and Incident Count Inside Each Station Area
(Three Years Containing 5,611 Emergent Apparatus Responses)

<table>
<thead>
<tr>
<th>Engine</th>
<th>Station 40</th>
<th>Station 41</th>
<th>Station 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>E40</td>
<td>06:17</td>
<td>2,749</td>
<td>10:24</td>
</tr>
<tr>
<td>E41</td>
<td>10:10</td>
<td>369</td>
<td>06:13</td>
</tr>
<tr>
<td>E44</td>
<td>12:59</td>
<td>81</td>
<td>08:58</td>
</tr>
</tbody>
</table>

While the travel time in each station area, to 90% of incidents, is a little past the 5:30 minute/second goal, in Citygate’s experience this is very good performance across a challenging topography and road network.

Having established that response times for the primary assigned unit per area are very good, the next question becomes, “What are the response times for a second-due unit, when either more firefighters are needed, or the primary unit is already committed to a prior incident?” The table below shows the travel time for each unit into other station areas:

Table 4—Travel Time to 90% and Incident Count into Other Station Areas
(Three Years Containing 5,611 Emergent Apparatus Responses)

<table>
<thead>
<tr>
<th>Engine</th>
<th>Station 40</th>
<th>Station 41</th>
<th>Station 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>E40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E41</td>
<td>09:28</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>E44</td>
<td>12:59</td>
<td>39</td>
<td>08:58</td>
</tr>
</tbody>
</table>

This data shows that second-due unit performance into the most immediate adjoining station area is under 10 minutes. This, again, is very good considering the District’s topography and road network.

When the third-due unit has to cross into the farthest station area, the travel times are longer and approach the limit of what a rural system should be expected to deliver. If only one fire station were to serve both populated areas north of Half Moon Bay, this must be considered. If only one fire station were to serve both populated areas north of Half Moon Bay. In that event, both northern units would (depending on location) have equal travel times into all areas. Thus, the area that “lost” a fire station would experience increased travel times for the first-due unit.

The following Google Earth map image shows, by small measurement areas, the volume of incidents per area over three years. The color indicates good response time (green) or slower response time (red). This image illustrates the data in the travel timetables above. Specifically, emergency volumes are highest in the more populated areas.
Figure 1—Volume of Incidents per Area over Three Years
SECTION 4—EXISTING GEOGRAPHIC COVERAGE MODELS

To analyze first-due fire unit travel time coverage, Citygate used a geographic mapping tool, called FireView, that can measure theoretical travel time over the street network. For this portion of the study, Citygate GIS staff used the base map and posted street speed limits calibrated to actual fire company travel times from previous responses to simulate real world fire apparatus (not passenger car) coverage. Using these tools, Citygate ran several station re-location tests and measured their impact on various parts of the District. The travel time measure used was 5:30 minutes/seconds over the road network.

The images are published in Volume 2 of this report, in full size, for ease of viewing small detail. The following descriptions will explain the images and the re-located fire station scenarios.

The first few maps are plots of current station locations and where prior incidents have occurred across the District. This is important context because, ideally, stations should not be moved further from historical incident location patterns.

Map #1 – General Geography and Station Locations

This view shows the existing District fire station locations within the District’s boundaries. This is a reference map for the other map displays that follow.

Map #2 – All Incident Locations

This map is an overlay of the exact location for all incident types using a 3-year data set. It is apparent that there is a need for Fire Department services on almost every street segment of the District. The greatest concentration of calls is also where the greatest concentration of Fire Department resources is available.

Map #3 – All Fire Type Locations

This map identifies the location of all fires in the District over the previous 3 years. All fires include any type of fire call, from auto, to dumpster, to building. Obviously, there are fewer fires than medical or rescue calls. Given this, it is evident that all first-due engine districts experience fires.

Map #4 – EMS and Rescue Incident Locations

This map further breaks out only the emergency medical and rescue call locations. Again, with the majority of the calls for service being emergency medical, virtually all areas of the District need emergency medical services.

Map #5 – Hot Spots for All Incident Locations

Using the 3-year data set, this map examines, by mathematical density, where clusters of incident activity occurred. In this set, the darker density color plots the highest concentration of all
incidents. This type of map makes the locations of frequent workload more meaningful than simply mapping the locations as done in Map #2. This perspective is important because overlap of units is critical to ensure the delivery of a good concentration of units for a multiple-apparatus response to serious emergencies.

Map #6 – All Fire Location Densities

This map shows the hot spot activity for all fires. In this case, the call for service density is slightly more scattered, reflecting small fires, such as auto fires, in areas where the population density is lower than the urban core.

Map #7 – EMS and Rescue Incident Location Densities

This map is similar to Map #4, but only the medical and rescue hot spots of activity are plotted. The clusters of activity look very similar to the all-incident set in Map #5 because medical calls are such a large portion of the total.

Map #8 – First-Due Unit Coverage at 5:30 Minutes/Seconds Engine Travel

This map shows, in green colored street segments, the distribution, or first-due response time, for each station per the response goal of 5:30 minutes/seconds travel time. Therefore, the limit of color per station area is the time an engine could reach within this travel time. In lay terms, the color shows how far an engine can travel in 5:30 minutes/seconds. This map assumes responders are in-station and encounter no unusual traffic delays. Thus, the projection is optimal, or “perfect-world.”

Real dispatch data shows response times to be a little slower in some edge areas. Most likely, this is due to the effects of the non-grid street design, and the upslope, hilly areas. The purpose of computer response mapping is to determine, and balance, station locations. This geo-mapping design is then checked in the study against actual dispatch time data. There should also be some overlap between station areas so that a second-due unit can have a chance of an adequate response time when it covers a call in another fire company’s first-due area.

It is not possible to serve every road segment out to the edge of the District in 5:30 travel minutes; however, these maps show that most of the District is covered to this goal point.
SECTION 5—RELOCATION OF FIRE STATION COVERAGE MODELS

With an understanding of prior travel time coverage, and predicated on computer model coverage from the existing stations, Citygate then analyzed a series of test scenarios. One of the benefits of the GIS computer models is that they not only make maps to visualize coverage, but they have the ability to measure the quantity of road miles actually covered within a time measure for existing and proposed sites. This quantifies the differences between sites much better than a map.

Citygate asked District staff to review local zoning and identify possible open parcels that might accommodate a fire station. That review found several vacant land sites to from which to project possible fire unit travel time. It needs to be stressed that these sites may not be for sale or survive the due diligence needed for community, District, legal, environmental, and cost acceptance.

At this early test point, it is not feasible for the GIS model to find a “best-fit” fire station site if that site contains buildings in use, or land with zoning or environmental restrictions that would prevent the parcel from being considered. However, by starting with several vacant parcels in each neighborhood, the District leadership can determine if one or two replacement fire stations are needed, and if so, a best fit location within a few tenths of a mile in either direction.

The District provided 11 alternative northern-area station locations. Given that some were on adjacent plots, some locations were plotted as a single site. Thus, Citygate tested seven sites:

- 240 Capistrano
- 11820 Cabrillo Hwy
- Obispo Rd (next to existing station)
- Vermont/Hwy 1
- 9700 Cabrillo Hwy
- 8888 Cabrillo Hwy
- 1st St / Hwy 1

From these sites, eight scenarios were designed to test a single or various two-station moves. The GIS model calculated the “as is” **base case** comparison measure that the three existing fire stations cover to be **122.6** road miles **within 5:30 minutes/seconds** of travel, totaling **78%** of the total public, paved road miles in the District. In simpler terms, the three current fire stations can reach 122.6 of the District’s 158 road miles within 5:30 minutes/seconds. Citygate placed all of the road mile coverage measures by scenario into an MS-Excel spreadsheet that is sortable by different priorities. This tool, along with the map images, was given to the District so that it can continue to compare the final site choices. In the scenario descriptions below, Citygate will cite road mile coverage measures from these GIS and spreadsheet tools.
Map #9 – Test Fire Station Locations

This map view shows the existing District fire station locations along with all of the test parcel locations.

The following table was taken from the MS-Excel spreadsheet and depicts road mile coverage measurements from the possible test fire station sites identified in Map #9:

<table>
<thead>
<tr>
<th>Table 5—Road Mile Coverage for All Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10a</td>
</tr>
<tr>
<td>10b</td>
</tr>
<tr>
<td>10c</td>
</tr>
<tr>
<td>11a</td>
</tr>
<tr>
<td>11b</td>
</tr>
<tr>
<td>11c</td>
</tr>
<tr>
<td>11d</td>
</tr>
<tr>
<td>12a</td>
</tr>
<tr>
<td>12b</td>
</tr>
<tr>
<td>12c</td>
</tr>
<tr>
<td>12d</td>
</tr>
<tr>
<td>12e</td>
</tr>
<tr>
<td>12f</td>
</tr>
<tr>
<td>12g</td>
</tr>
<tr>
<td>12h</td>
</tr>
<tr>
<td>12i</td>
</tr>
<tr>
<td>12j</td>
</tr>
<tr>
<td>12k</td>
</tr>
<tr>
<td>12l</td>
</tr>
<tr>
<td>9a</td>
</tr>
<tr>
<td>9b</td>
</tr>
<tr>
<td>9c</td>
</tr>
<tr>
<td>9d</td>
</tr>
<tr>
<td>9e</td>
</tr>
<tr>
<td>9f</td>
</tr>
<tr>
<td>9g</td>
</tr>
</tbody>
</table>

Scenario #1 – Maps #9a-c – Merging the Two Northern Stations into One Site in Station 41’s Area

This scenario tests three sites in Station 41’s area. Of sites 9a through 9c, Citygate finds that the 240 Capistrano parcel is the best fit. It has the least overlap coverage to the south, meaning it
does not duplicate or waste travel time coverage that Station 40 can provide. Utilizing this single location will reduce the amount of road miles covered within 5:30 minute/seconds to 102.8, a 13% reduction.

Scenario #2 – Maps #9d-g – Merging the Two Northern Stations into One Site in Station 44’s Area

This scenario tests four sites in Station 44’s area. Of sites 9a through 9c, Citygate finds that the 9700 Highway 1 parcel is the best fit. It has no overlap coverage to the south. As for road mile coverage, this single location will **reduce** travel time coverage the least at 5:30 minute/seconds by 12%. As a comparison, if the 1st Street and Highway 1 site were selected, road mile coverage would reduce by 23% district-wide.

Scenario #3 – Maps #10a-c – Using Three Fire Stations, Testing Three Sites in Station 41’s Area

This scenario tests three sites in Station 41’s area. In this test, Station 44 does not move. Of sites 10a through 10c, Citygate finds that the 240 Capistrano parcel is the best fit. This location provides the same overall road mile coverage at 78%, but has the best overlap north into Station 44’s area. This means its second-due times to the north are better in case Station 44 is on a prior incident.

Scenario #4 – Maps #11a-d – Using Three Fire Stations, Testing Four Sites in Station 44’s Area

This scenario tests four sites in Station 44’s area. In this test, Station 41 does not move. Of sites 11a through 11c, Citygate finds that the Vermont and Highway 1 parcel is the best fit. This location **increases** overall road mile coverage to 79%, and has slight overlap south into Station 41’s area. The 1st St and Highway 1 site is too far to the north, with very limited overlap to Station 41’s area.

Scenario #5 – Maps #12a-c – Using Three Fire Stations, Moving Both Stations 41 and 44

In this scenario, Station 44 is relocated to 1st Street and Highway 1 and is kept fixed as three locations are tested for Station 41. The best-fit site for Station 41 is at 11820 Cabrillo Highway, increasing road mile coverage up to 80%. This location provides overlap to the north and south.

Scenario #6 – Maps #12d-f – Using Three Fire Stations, Moving Both Stations 41 and 44

In this scenario, Station 44 is relocated to 8888 Cabrillo Highway 1 and is kept fixed as three locations are tested for Station 41. The best-fit site for Station 41 is at 11820 Cabrillo Highway, increasing road mile coverage up to 79%. This location provides overlap to the north and south.
Scenario #7 – Maps #12g-i – Using Three Fire Stations, Moving Both Stations 41 and 44

In this scenario, Station 44 is relocated to Vermont and Highway 1 and is kept fixed as three locations are tested for Station 41. The best-fit site for Station 41 is again at 11820 Cabrillo Highway, increasing road mile coverage up to 79%. This location provides overlap to the north and south.

Scenario #8 – Maps #12j-l – Using Three Fire Stations, Moving Both Stations 41 and 44

In this scenario, Station 44 is relocated to 9700 Highway 1 and is kept fixed as three locations are tested for Station 41. The best-fit site for Station 41 is again at 11820 Cabrillo Highway, where road mile coverage is unchanged at 78%. This location provides good overlap to the north and south station areas.
SECTION 6—FINDINGS AND CONSIDERATIONS

Given all of the analysis in this study, along with the exhibits provided to the District, Citygate makes the following findings:

1. Merging the two northern District fire stations into one station lowers the existing neighborhood response times, which are very good.

2. Such a station consolidation also reduces overlap into adjoining areas when cover or multiple units are needed in each population cluster in the District.

3. Scenario #6, Map #12e is the best fit two-station model at:
 a. 11820 Cabrillo Highway (Station 41’s area)
 b. 8888 Cabrillo Highway (Station 44’s area)

4. Placing the Moss Beach replacement Station 44 at 8888 Cabrillo Highway allows it to cover all of the occupied streets to the north at 5:30 minutes/seconds travel, and provides some overlap down into Station 41’s area.

Citygate values this more northern coverage over increased overlap southerly into Station 41’s area. This is due to the fact that there is no fire station to the immediate north, in Devil’s Slide, to cover the northern-most neighborhoods in the District. Thus, we would “start” the coverage from the northern-most streets with homes and let the coverage extend as far as it can to the south, where at least another unit can come up northbound to meet it. However, the differences between some of the site pairings are small, and the District will have to look at all other factors in siting a new station before it can make a final, conclusive determination.

Based on our findings and our experience relocating fire stations, Citygate suggests these considerations as the District moves forward:

1. Maintain a three-station deployment model.

2. As some of the differences between site pairings are very small, Citygate suggests these factors next be evaluated to narrow down the selections for final cost determination:
 a. Parcel size.
 b. Traffic access for fire trucks.
 c. Land cost and cost of site improvements before a station can be built.
 d. Impacts to neighbors.
CITYGATE ASSOCIATES, LLC
Management Consultants

Folsom (Sacramento), CA

Fire Station Relocation Study
for the
Coastside Fire Protection District

Volume 2 of 2 – Map Atlas
February 19, 2014

2250 East Bidwell St., Ste #100 Folsom, CA 95630
(916) 458-5100 Fax: (916) 983-2090
Coastside Fire Protection District
Map 12d: 5:30 Engine Travel
Three Station Scenario:
Station 44 Relocated to 8888 Cabrillo Hwy
Station 41 Relocated to 240 Capistrano

Legend
5:30 Travel
- Existing Station(s)
- 240 Capistrano
- 8888 Cabrillo Hwy

Stations
- Engine
- Engine, BC
- Engine, Truck
- Proposed

Other
- CFPD Boundary
Coastside Fire Protection District
Map 12l: 5:30 Engine Travel
Three Station Scenario:
Station 44 Relocated to 9700 block Hwy 1
Station 41 Relocated to Obispo Rd site

Legend
5:30 Travel
- Existing Station(s)
- Obispo Rd
- 9700 Hwy 1

Stations
- Engine
- Engine, BC
- Engine, Truck
- Proposed

Other
- CFPD Boundary